
C Language

 - 1 -

INDEX

1. Instructions for use

2. Structure of a program

3. Variables. Data Types.

4. Constants

 5. Operators

6. Basic Input/Output

7. Control Structures

8. Functions

8. Classes and objects

10. Arrays ,Pointers reference,Dyanamic allocation

11. Function overloading , copy constructor, Default argument

12. Operator Overloading

13. Inheritance

14. Virtual Function & Polymorphism

15. File I/0

C Language

 - 2 -

Chapter 1.

 BEGINNING WITH C++

WHAT IS C++

C++ is an object oriented programming language. It was developed by
bjarne stroustrup at AT&T bell laboratories in usa , in the early 1980’s .
stroustrup, an admirer of simula67 and a strong supporter of c , wanted
to combine the best of both the languages and create a more powerfull
language that could support object-oriented programming features and
still retain the power and elegance of c . the result was c++. Therefore ,
c++ is an extention of c with a major addition of the class construct
feature of simula67. since the class was a major addition to the original
c language , stroustrup initially called the new language ‘c with classes’.
However ,later in 1983 , the name was changed to c++. The idea of c++
comes from the c increment operator ++, therby suggesting that c++ is
an incremented version of c.

Chapter 2.

 Structure of a program

C Language

 - 3 -

Probably the best way to start learning a programming language is by
writing a program. Therefore, here is our first program:

// my first program in C++
#include <iostream.h>
//using namespace std;
int main ()
{
cout << "Hello World!";
return 0;
}
Hello World

The first panel shows the source code for our first program. The
second one shows the result of the program once compiled and
executed. The way to edit and compile a program depends on the
compiler you are using. Depending on whether it has a Development
Interface or not and on its version. Consult the compilers section and the
manual or help included with your compiler if you have doubts on how to
compile a C++ console program. The previous program is the typical
program that programmer apprentices write for the first time, and its
result is the printing on screen of the "Hello World!" sentence. It is one of
the simplest programs that can be written in C++, but it already contains
the fundamental components that every C++ program has. We are
going to look line by line at the code we have just written:

// my first program in C++

This is a comment line. All lines beginning with two slash signs (//)

are considered comments and do not have any effect on the behavior of
the program. The programmer can use them to include short
explanations or observations within the source code itself. In this case,
the line is a brief description of what our program is.

#include <iostream>
Lines beginning with a hash sign (#) are directives for the

preprocessor. They are not regular code lines with expressions but
indications for the compiler's preprocessor. In this case the directive
#include <iostream> tells the preprocessor to include the iostream
standard file. This specific file (iostream) includes the declarations of the
basic standard input-output library in C++, and it is included because its
functionality is going to be used later in the program.

C Language

 - 4 -

using namespace std;

All the elements of the standard C++ library are declared within
what is called a namespace, the namespace with the name std. So in
order to access its functionality we declare with this expression that we
will be using these entities. This line is very frequent in C++ programs
that use the standard library, and in fact it will be included in most of the
source codes included in these tutorials.

int main ()

This line corresponds to the beginning of the definition of the main
function. The main function is the point by where all C++ programs start
their execution, independently of its location within the source code. It
does not matter whether there are other functions with other names
defined before or after it - the instructions contained within this function's
definition will always be the first ones to be executed in any C++
program. For that same reason, it is essential that all C++ programs
have a main function. The word main is followed in the code by a pair of
parentheses (()). That is because it is a function declaration: In C++,
what differentiates a function declaration from other types of
expressions are these parentheses that follow its name. Optionally,
these parentheses may enclose a list of parameters within them. Right
after these parentheses we can find the body of the main function
enclosed in braces ({}). What is contained within these braces is what
the function does when it is executed.

cout << "Hello World";

This line is a C++ statement. A statement is a simple or
compound expression that can actually produce some effect. In fact, this
statement performs the only action that generates a visible effect in our
first program. cout represents the standard output stream in C++, and
the meaning of the entire statement is to insert a sequence of characters
(in this case the Hello World sequence of characters) into the standard
output stream (which usually is the screen). cout is declared in the
iostream standard file within the std namespace, so that's why we
needed to include that specific file and to declare that we were going to
use this specific namespace earlier in our code. Notice that the
statement ends with a semicolon character (;). This character is used to
mark the end of the statement and in fact it must be included at the end
of all expression statements in all C++ programs (one of the most
common syntax errors is indeed to forget to include some semicolon
after a statement).

return 0;

C Language

 - 5 -

The return statement causes the main function to finish. return
may be followed by a return code (in our example is followed by the
return code 0). A return code of 0 for the main function is generally
interpreted as the program worked as expected without any errors
during its execution. This is the most usual way to end a C++ console
program. You may have noticed that not all the lines of this program
perform actions when the code is executed. There were lines containing
only comments (those beginning by //). There were lines with directives
for the compiler's preprocessor (those beginning by #). Then there were
lines that began the declaration of a function (in this case, the main
function) and, finally lines with statements (like the insertion into cout),
which were all included within the block delimited by the braces ({}) of
the main function. The program has been structured in different lines in
order to be more readable, but in C++, we do not have strict rules on
how to separate instructions in different lines. For example, instead of

int main ()
{
cout << " Hello World ";
return 0;
}

We could have written:

int main ()
{
 cout << "Hello World"; return 0;
}

All in just one line and this would have had exactly the same
meaning as the previous code. In C++, the separation between
statements is specified with an ending semicolon (;) at the end of each
one, so the separation in different code lines does not matter at all for
this purpose. We can write many statements per line or write a single
statement that takes many code lines. The division of code in different
lines serves only to make it more legible and schematic for the humans
that may read it. Let us add an additional instruction to our first program:

// my second program in C++
#include <iostream>
using namespace std;
int main ()
{
cout << "Hello World! ";
cout << "I'm a C++ program";
return 0;
}

Hello World! I'm a C++ program

C Language

 - 6 -

In this case, we performed two insertions into cout in two different

statements. Once again, the separation in different lines of code has
been done just to give greater readability to the program, since main
could have been perfectly valid defined this way:

int main ()
{ cout << " Hello World! "; cout << " I'm a C++ program "; return 0; }

We were also free to divide the code into more lines if we considered it
more convenient:

int main ()
{
cout <<
"Hello World!";
cout
<< "I'm a C++ program";
return 0;
}

And the result would again have been exactly the same as in the
previous examples. Preprocessor directives (those that begin by #) are
out of this general rule since they are not statements. They are lines
read and processed by the preprocessor and do not produce any code
by themselves. Preprocessor directives must be specified in their own
line and do not have to end with a semicolon (;).

Comments

Comments are parts of the source code disregarded by the
compiler. They simply do nothing. Their purpose is only to allow the
programmer to insert notes or descriptions embedded within the source
code. C++ supports two ways to insert comments:
// line comment
/* block comment */

The first of them, known as line comment, discards everything
from where the pair of slash signs (//) is found up to the end of that
same line. The second one, known as block comment, discards
everything between the /* characters and the first appearance of the */
characters, with the possibility of including more than one line. We are
going to add comments to our second program:

/* my second program in C++
with more comments */

C Language

 - 7 -

#include <iostream>
using namespace std;
int main ()
{
cout << "Hello World! "; // prints Hello World!
cout << "I'm a C++ program"; // prints I'm a C++ program
return 0;
}
Hello World! I'm a C++ program

If you include comments within the source code of your programs
without using the comment characters combinations //, /* or */, the
compiler will take them as if they were C++ expressions, most likely
causing one or several error messages when you compile it.

Chapter 3.

Variables. Data Types.

The usefulness of the "Hello World" programs shown in the
previous section is quite questionable. We had to write several lines of
code, compile them, and then execute the resulting program just to
obtain a simple sentence written on the screen as result. It certainly
would have been much faster to type the output sentence by ourselves.
However, programming is not limited only to printing simple texts on the
screen. In order to go a little further on and to become able to write
programs that perform useful tasks that really save us work we need to
introduce the concept of variable. Let us think that I ask you to retain the
number 5 in your mental memory, and then I ask you to memorize also
the number 2 at the same time. You have just stored two different
values in your memory. Now, if I ask you to add 1 to the first number I
said, you should be retaining the numbers 6 (that is 5+1) and 2 in your
memory. Values that we could now for example subtract and obtain 4 as

C Language

 - 8 -

result.The whole process that you have just done with your mental
memory is a simile of what a computer can do with two variables. The
same process can be expressed in C++ with the following instruction
set:

a = 5;
b = 2;
a = a + 1;
result = a - b;

Obviously, this is a very simple example since we have only used
two small integer values, but consider that your computer can store
millions of numbers like these at the same time and conduct
sophisticated mathematical operations with them. Therefore, we can
define a variable as a portion of memory to store a determined value.
Each variable needs an identifier that distinguishes it from the others, for
example, in the previous code the variable identifiers were a, b and
result, but we could have called the variables any names we wanted to
invent, as long as they were valid identifiers.

Identifiers

A valid identifier is a sequence of one or more letters, digits or
underscore characters (_). Neither spaces nor punctuation marks or
symbols can be part of an identifier. Only letters, digits and single
underscore characters are valid. In addition, variable identifiers always
have to begin with a letter. They can also begin with an underline
character (_), but in some cases these may be reserved for compiler
specific keywords or external identifiers, as well as identifiers containing
two successive underscore characters anywhere. In no case they can
begin with a digit. Another rule that you have to consider when inventing
your own identifiers is that they cannot match any keyword of the C++
language nor your compiler's specific ones, which are reserved
keywords. The standard reserved keywords are:

asm, auto, bool, break, case, catch, char, class, const, const_cast,
continue, default, delete, do, double, dynamic_cast, else, enum,explicit,
export, extern, false, float, for, friend, goto, if, inline, int, long, mutable,
namespace, new, operator, private,protected, public, register,
reinterpret_cast, return, short, signed, sizeof, static, static_cast, struct,
switch, template, this,throw, true, try, typedef, typeid, typename, union,
unsigned, using, virtual, void, volatile, wchar_t, while
Additionally, alternative representations for some operators cannot be
used as identifiers since they are reserved words under some
circumstances:

and, and_eq, bitand, bitor, compl, not, not_eq, or, or_eq, xor, xor_eq
Your compiler may also include some additional specific reserved
keywords.

C Language

 - 9 -

Very important:

The C++ language is a "case sensitive" language. That means
that an identifier written in capital letters is not equivalent to another one
with the same name but written in small letters. Thus, for example, the
RESULT variable is not the same as the result variable or the Result
variable. These are three different variable identifiers.

Fundamental data types

When programming, we store the variables in our computer's
memory, but the computer has to know what kind of data we want to
store in them, since it is not going to occupy the same amount of
memory to store a simple number than to store a single letter or a large
number, and they are not going to be interpreted the same way. The
memory in our computers is organized in bytes. A byte is the minimum
amount of memory that we can manage in C++. A byte can store a
relatively small amount of data: one single character or a small integer
(generally an integer between 0 and 255). In addition, the computer can
manipulate more complex data types that come from grouping several
bytes, such as long numbers or non-integer numbers. Next you have a
summary of the basic fundamental data types in C++, as well as the
range of values that can be represented with each one:

Name Description Size* Range*
char Character or small intege 1byte signed: -128 to 127
 unsigned: 0 to 255
short int (short) Short Integer. 2bytes signed: -32768 to
32767
 unsigned: 0 to
65535
int Integer. 4bytes signed:-
2147483648 to
 2147483647
 unsigned: 0 to
4294967295
long int Long integer. 4bytes signed: -
2147483648 to
 2147483647
 unsigned: 0 to
4294967295
bool Boolean value. 1byte true or false.

float Floating point number. 4bytes +/- 3.4e +/-
38
double Double precision . 8bytes +/- 1.7e +/-
308

C Language

 - 10 -

long double Long double precision 8bytes +/- 1.7e +/-
308

The values of the columns Size and Range depend on the
system the program is compiled for. The values shown above are those
found on most 32-bit systems. But for other systems, the general
specification is that int has the natural size suggested by the system
architecture (one "word") and the four integer types char, short, int and
long must each one be at least as large as the one preceding it, with
char being always 1 byte in size. The same applies to the floating point
types float, double and long double, where each one must provide at
least as much precision as the preceding one.

Declaration of variables

In order to use a variable in C++, we must first declare it
specifying which data type we want it to be. The syntax to declare a new
variable is to write the specifier of the desired data type (like int, bool,
float...) followed by a valid variable identifier. For example:
int a;
float mynumber;

These are two valid declarations of variables. The first one
declares a variable of type int with the identifier a. The second one
declares a variable of type float with the identifier mynumber. Once
declared, the variables a and mynumber can be used within the rest of
their scope in the program. If you are going to declare more than one
variable of the same

